
J Glob Optim (2007) 38:315–331
DOI 10.1007/s10898-006-9132-y

O R I G I NA L PA P E R

Obtaining an outer approximation of the efficient set
of nonlinear biobjective problems

José Fernández · Boglárka Tóth

Received: 19 December 2005 / Accepted: 14 December 2006 / Published online: 1 February 2007
© Springer Science+Business Media B.V. 2007

Abstract A new method for obtaining an outer approximation of the efficient set
of nonlinear biobjective optimization problems is presented. It is based on the well
known ‘constraint method’, and obtains a superset of the efficient set by computing
the regions of δ-optimality of a finite number of single objective constraint problems.
An actual implementation, which makes use of interval tools, shows the applicability
of the method and the computational studies on a set of competitive location problems
demonstrate its efficiency.

Keywords Nonlinear biobjective optimization ·Efficient set ·Outer approximation ·
Constraint method · Interval analysis · Competitive location

1 Introduction

Multiobjective optimization problems are ubiquitous. Many real-life problems require
taking several conflicting points of view into account. In this paper, we restrict our-
selves to the biobjective case, that is, to the problem

min {f1(x), f2(x)},
s.t. x ∈ S ⊆ R

n,
(1)

An extended version of this paper, with more comments, details, examples, and references, can be
found in Fernández and Tóth [5]. This paper has been supported by the Ministry of Education and
Science of Spain under the research project SEJ2005-06273/ECON, in part financed by the
European Regional Development Fund (ERDF).
Boglárka Tóth—On leave from the Research Group on Artificial Intelligence of the Hungarian
Academy of Sciences and the University of Szeged, H-6720 Szeged, Aradi vértanúk tere 1., Hungary.

J. Fernández (B) · B. Tóth
Department of Statistics and Operations Research, University of Murcia, Murcia, Spain
e-mail: josefdez@um.es

316 J Glob Optim (2007) 38:315–331

where f1, f2 : R
n −→ R are two real-valued functions. Let us denote by f (x) =

(f1(x), f2(x)) the vector of objective functions, and by Z = f (S) the image of the
feasible region.

When dealing with multiobjective problems we need to clarify what ‘solving’ a
problem means. Some widely known definitions to explain the concept of solution of
(1) follow.

Definition 1 A feasible vector x∗ ∈ S is said to be efficient iff there does not exist
another feasible vector x ∈ S such that fi(x) ≤ fi(x∗) for all i = 1, 2, and fj(x) < fj(x∗)
for at least one index j. The set SE of all the efficient points is called the efficient set.

Efficiency is defined in the decision space. The corresponding definition in the
criterion space is as follows.

Definition 2 An objective vector z∗ = f (x∗) ∈ Z is said to be nondominated iff x∗ is
efficient. The set ZN of all nondominated vectors is called the nondominated set.

In this paper, we assume that both SE and ZN are bounded. Another related
concept widely used is weak efficiency.

Definition 3 A feasible vector x∗ ∈ S is said to be weakly efficient iff there does not
exist another feasible vector x ∈ S such that fi(x) < fi(x∗) for i = 1, 2.

Ideally, solving (1) means obtaining the whole efficient set, that is, all the points
which are efficient. That set might be described analytically as a closed formula,
numerically as a set of points, or in mixed form as a parameterized set of points.
Unfortunately, as pointed out in Ruzika and Wiecek [19], for the majority of multi-
objective optimization problems, it is not easy to obtain such a description, since the
efficient set includes typically a very large number or infinite number of points. The
methods proposed in the literature with that purpose are specialized either for par-
ticular problems (for instance, in Nickel and Puerto [16] it is shown how to obtain the
whole efficient set of some location problems) or for a particular class of multiobjec-
tive problems (for instance, the multiobjective simplex method for the linear case [7]).
To the extent of our knowledge, only one general method (see [6]) has been proposed
in the literature with that purpose for the general nonlinear biobjective problem (1).
The reason for this lack of methods is that even obtaining a single efficient point of a
nonlinear biobjective problem can be a difficult task. That is why some authors have
proposed to present to the decision-maker a ‘representative set’ of efficient points
which suitably represent the whole efficient set (either by modifying the definition of
efficiency [1] or by selecting a finite set of efficient points with the criteria of coverage,
uniformity, and cardinality as quality measures [20]) or an ‘approximation’ of the
efficient set by means of sets with a simpler structure (see [19] for a survey of methods
with that aim).

The approach in this paper is similar to that in Fernández et al. [6]: we offer a
superset which tightly contains the complete efficient set. However, the method pre-
sented in this paper is completely different from that in Fernández et al. [6], and what
is more important, it is much faster (see Sect. 5.2). By drawing in the image space that
superset the decision-maker can easily see the trade-off between the two objectives,
i.e., how one objective improves as the other gets worse. Something similar can be
done in the decision space, by drawing the superset in a color scale depending on the
objective value of one of the objectives.

J Glob Optim (2007) 38:315–331 317

The paper is organized as follows. In the following section, we present the tools
used to derive our method. It is in Sect. 3, where we introduce our constraint-like
method, which provides a superset of the efficient set of (1). In Sect. 4, we detail how
the constraint-like method can be carried out in practice using interval tools. Some
computational studies are reported in Sect. 5. The paper ends with conclusions and
points for future research.

2 Preliminaries

2.1 The constraint method

There is a variety of methods for finding efficient points of nonlinear multiobjec-
tive optimization problems (see [2,15] and the references therein), e.g., weighting
method, lexicographic method, … , but among them, only a few (e.g., the constraint
method, reference point methods,…) are able to detect all nondominated points. Prob-
ably, the constraint method is the most famous among them. The rationale behind the
constraint method is rather simple. One of the objective functions, say f1, is selected
to be minimized, whereas the other one, f2, is converted into a constraint by setting
an upper bound f ub

2 to it. The single objective problem to be solved, called constraint
problem, is then

min f1(x),
s.t. f2(x) ≤ f ub

2 ,
y ∈ S.

(2)

The goodness of the constraint method can be seen in the following theorems (for
a proof, see for instance [15]).

Theorem 1 The solution of the constraint problem (2) is weakly efficient.

Theorem 2 A feasible vector x∗ ∈ S is efficient if and only if it is a solution of the
constraint problems

min f1(x),
s.t. f2(x) ≤ f2(x∗),

x ∈ S
and

min f2(x),
s.t. f1(x) ≤ f1(x∗),

x ∈ S.

From the previous theorems it follows that it is possible to find all the efficient solu-
tions of any biobjective optimization problem by the constraint method. However,
we need to solve one or two problems to find one nondominated point, which means
that if the nondominated set is not a discrete set (as it is usually the case in continuous
multiobjective optimization) then the method is not practical for finding the complete
efficient set.

2.2 Obtaining a region of δ-optimality

Consider a single-objective problem

min h(x),
s.t. x ∈ Y ⊆ R

n,
(3)

318 J Glob Optim (2007) 38:315–331

Fig. 1 Inner and outer
approximation of Rδ

where h: R
n −→ R is a real-valued function and Y is a general set defined by any kind

of constraints. If we denote by h∗ the optimal value of (3), the region of δ-optimality
of (3) is the set

Rδ = {x ∈ Y : h(x)− h∗ ≤ δ · |h∗|}.

The other tool that we need to derive the method of the next section is a procedure
for obtaining the region of δ-optimality of a given problem. In Plastria [17], a branch-
and-bound method for obtaining the region of δ-optimality of (3) is presented. It
consists of two phases. The first one entails the determination of the optimal objective
value of (3) up to a prespecified relative precision ε. The second phase consists of
the determination of Rδ , up to a prespecified precision η. The output of the algo-
rithm is two lists of subsets, LIRδ and LORδ . The union of the subsets in the first list,
IRδ = ∪Q∈LIRδ

Q, intersected with Y gives an inner approximation of Rδ (a subset of
Rδ). The union of the subsets in both lists, ORδ = ∪Q∈LIRδ∪LORδ

Q, intersected with
Y forms an outer approximation of Rδ (a superset of Rδ), guaranteed to lie entirely
within Rδ+η(1+δ) (see Fig. 1), i.e.,

IRδ ∩ Y ⊆ Rδ ⊆ ORδ ∩ Y ⊆ Rδ+η(1+δ).

3 The constraint-like method

As explained above, with the classical constraint method we have to solve one (or
two) constraint problems of the form (2) in order to be able to obtain a single non-
dominated point, z∗. However, if in addition to solving (2) to optimality we compute
its region of δ-optimality, then Rδ contains a ‘portion’ of the efficient set whose values
in the criterion space are close to z∗. The idea of the constraint-like method to obtain
a superset containing the whole efficient set is simply this: considering that ZN is plot-
ted in the criterion space, we sweep the nondominated set from (say) top to bottom
by obtaining the regions of δ-optimality of a finite sequence of constraint problems,
whose type is a modification of (2), by choosing appropriate upper bounds f ub

2 for the
f2 function. Next, we give the details.

The first constraint problem that we will consider, (P̄0), is

min f1(x),
s.t. x ∈ S.

J Glob Optim (2007) 38:315–331 319

Fig. 2 Image space of a
biobjective problem using
MCLM. The gray region is the

image of R(i−1)
δ , f (R(i−1)

δ), and
the striped region is the image
of R(i)

δ , f (R(i)
δ). f (Q(i)

N) denotes

the image of a subset Q(i)
N at

which the minimum (4) or (5)
is attained, i.e., a subset such
that f (i+1)

2 = F2(Q(i)
N)

The remaining constraint problems that we will use are of the form

(P̄i)

min f1(x),
s.t. f2(x) ≤ f (i)

2 ,
f1(x) ≥ f1(x̂(i−1))+ δ|f1(x̂(i−1))|,
x ∈ S,

where f (i)
2 is a given constant defined below and x̂(i−1) denotes an optimal solution of

the previous problem (P̄i−1), i ≥ 1. The feasible set of (P̄i) is Y(i) = {x ∈ S : f2(x) ≤
f (i)
2 , f1(x) ≥ f1(x̂(i−1))+ δ|f1(x̂(i−1))|}.

The constant f (i)
2 is defined as follows. For i = 0 we set f (0)

2 = f2(x̂(0)). Let R(i)
δ be

the region of δ-optimality of (P̄i), i ≥ 0. Then, once we have solved problem (P̄i) and
have obtained an outer approximation OR(i)

δ of R(i)
δ with the help of the procedure

mentioned in Sect. 2.2, the constant f (i+1)
2 for the next problem (P̄i+1), is given by

f (i+1)
2 = min{f (i)

2 , min{F2(Q) : Q ∈ LIR(i)
δ ∪ LOR(i)

δ , Q ∩ R(i)
δ 	= ∅}}, (4)

where Q denotes a subset of the output lists of the procedure described in Sect. 2.2,
and F2(Q) is an upper bound on all objective values of f2 found within the subset Q
(see Fig. 2). However, from a computational point of view, it can be better to set

f (i+1)
2 = min{f (i)

2 , min{F2(Q) : Q ∈ LIR(i)
δ , Q ∩ Y(i) 	= ∅}} (5)

although this is a worse (higher) value than the one obtained with (4). Using (5) we
only have to check whether a subset Q in LIR(i)

δ contains at least one feasible point
of (P̄i). If so, we take that subset into account for calculating the minimum in (5).

Notice that whereas the constraint on f2 in problem (P̄i) forces the image of the fea-
sible set of the problems to go down in the criterion space as i increases, the constraint
on f1 forces it to go to the right (see Fig. 2).

The method that we propose to obtain an outer approximation of the efficient set
of (1) is the following (see Fig. 2):

Constraint-like method (MCLM)

1. i← 0.
2. While (P̄i) is feasible

(a) Obtain an outer approximation OR(i)
δ of the region R(i)

δ of δ-optimality of
problem (P̄i) using the procedure mentioned in Sect. 2.2.

320 J Glob Optim (2007) 38:315–331

(b) Calculate f (i+1)
2 as given by (4) or (5).

(c) i← i+ 1.
3.

⋃i−1
j=0 OR(j)

δ contains the efficient set of (1).

Theorem 3 Suppose that both the efficient set and the nondominated set of (1) are
bounded. Suppose also that f1(x̂(0)) > 0. Then MCLM obtains the complete efficient
set of (1) in a finite number of steps.

Proof From Theorem 2, a necessary condition for a feasible vector to be efficient is
that it must be a solution of a problem of the form

(Paux)

min f1(x),
s.t. f2(x) ≤ f (aux)

2 ,
x ∈ S.

We shall proof that all the optimal solutions of problems of that type which are effi-
cient lie in a region of δ-optimality of one of the problems of type (P̄i) solved by
MCLM. Let x̂(aux) be an optimal solution of (Paux).

Notice that the sequence {f1(x̂(i))} is nondecreasing. Thus, one of the following
three cases must happen:

A: f1(x̂(0)) ≤ f1(x̂(aux)) ≤ f1(x̂(0)) + δ|f1(x̂(0))|. It means that x̂(aux) is in the region of
δ-optimality of (P̄0).

B: There is an index i, 1 ≤ i ≤ last−1, such that f1(x̂(i−1))+δ|f1(x̂(i−1))| ≤ f1(x̂(aux)) ≤
f1(x̂(i)) + δ|f1(x̂(i))| (last-1 is the index of the last feasible problem considered by
the algorithm). Two subcases can happen:
B.1: f2(x̂(aux)) ≤ f (i)

2 . Then the point x̂(aux) is a feasible point of (P̄i). In particu-
lar, f1(x̂(aux)) ≥ f1(x̂(i)). Furthermore, by assumption, f1(x̂(aux)) ≤ f1(x̂(i)) +
δ|f1(x̂(i))|. Thus, x̂(aux) is in the region of δ-optimality of (P̄i).

B.2: f2(x̂(aux)) > f (i)
2 . Then, there must exist a point x̌ ∈ R(i−1)

δ such that f2(x̌) ≤
f (i)
2 < f2(x̂(aux)) and f1(x̌) ≤ f1(x̂(i−1)) + δ|f1(x̂(i−1))| ≤ f1(x̂(aux)). That is, x̌

dominates x̂(aux), i.e., x̂(aux) is not an efficient point for problem (1).
C: f1(x̂(aux)) > f1(x̂(last−1))+ δ|f1(x̂(last−1))|. Two cases can happen:

C.1: If f2(x̂(aux)) > f (last)
2 then x̂(aux) will not be an efficient point (similarly to

subcase B.2).
C.2: If f2(x̂(aux)) ≤ f (last)

2 then x̂(aux) will be a feasible point of (P̄last), but this is
a contradiction, since (P̄last) is infeasible (it was the problem provoking the
termination of the algorithm).

Notice that f1(x̂(aux)) < f1(x̂(0)) cannot happen, since the feasible set of (P̄0) con-
tains the feasible set of (Paux).

Thus, in any case, if x̂(aux) is an efficient point, then it lies in the region of δ-optimality
of one of the problems solved by the algorithm.

To prove that the algorithm stops after a finite number of steps, just notice that with
problem (P̄i) we sweep δ|f1(x̂(i))| units length along the f1 axis on ZN in the criterion
space. Thus, if we denote by ŷ(0) an optimal solution of problem

min f2(x),
s.t. x ∈ S

(6)

J Glob Optim (2007) 38:315–331 321

we need at most

f1(ŷ(0))− f1(x̂(0))

δf1(x̂(0))

problems to sweep to whole nondominated set. �
Remark 1 Notice that in addition to the constraint on f2 employed in the classical
constraint method, we have a second constraint on f1. We need to add this second
constraint, because otherwise, the algorithm may get stuck when f (i+1)

2 = f (i)
2 . This

may happen when the nondominated set is not connected and the ‘jump’ (along the
abscissa) is greater than δ|f1(x̂(i))| or when there is a continuum of weakly efficient
points with the same f2-value (i.e., in the image space the weakly efficient points form
a segment parallel to the axis, the length of that segment being greater than δ|f1(x̂(i))|).

Remark 2 The constraint-like method obtains a superset of the efficient set SE which
maps into a superset of the nondominated set ZN, which may be made as tight as
required by reducing the value of δ (and the tolerances used in the procedure obtain-
ing the regions of δ-optimality): the smaller the value of δ, the better the quality of
the approximation, but also the higher the number of subproblems to be solved.

Remark 3 Problem (P̄i) can be rewritten as

(P̃i)

min f1(x),
s.t. f2(x) ≤ f (i)

2 ,
x ∈ S\∪i−1

j=0OR(j)
δ ,

where instead of the constraint on f1, we remove from S the outer approximations of
the regions of δ-optimality of the problems already solved.

Remark 4 The condition f1(x̂(0)) > 0 in Theorem 3 is not restrictive. If a function
f1 does not satisfy it, we can use instead, for instance, the function f̂1(x) = f1(x) +
|f1(x̂(0))| + 1.

Remark 5 Notice that although the method that we have used to obtain the whole set
Rδ when deriving MCLM is inspired by the method in Plastria [17], any other method
which obtains the complete set Rδ (or an outer approximation of it) could serve. If we
denote by NORδ the outer approximation (or exact representation) of Rδ obtained
by any other method, the only thing that has to be changed when using it in MCLM is
the computation of the bounds f (i)

2 . If we denote by q any point in NORδ , the bounds
should be computed as

f (i+1)
2 = min{f (i)

2 , min{f2(q) : q ∈ NOR(i)
δ ∩ R(i)

δ }.
In fact, (4) and (5) are surrogates for the previous formula.

4 Carrying out the method: an interval implementation

The constraint problems that we have to solve may be global optimization ones (they
may have many local optima). Thus, we need to use global optimization techniques
to cope with them. Furthermore, instead of merely solving the constraint problems,

322 J Glob Optim (2007) 38:315–331

we must also obtain their region of δ-optimality. Among the global optimization
techniques only a branch-and-bound scheme seems to be appropriate for our pur-
poses, although the computation of bounds is a difficult task, too. In this paper, we
present such a method, which has some similarities with the two-phase method men-
tioned in Sect. 2.2 and described in Plastria [17], although modified for our purposes
and in a more general framework: Interval Analysis (for details on the topic, the inter-
ested reader is referred to Hansen and Walster, Kearfott, and Ratschek and Rokne
[9,13,18]).

In what follows, boldface will denote intervals, lower case will be used for scalar
quantities or vectors (vectors are then distinguished from components by use of sub-
scripts), and upper case for matrices. Brackets [·]will delimit intervals, while parenthe-
ses (·) indicate vectors and matrices. Underlines will denote lower bounds of intervals
and overlines give upper bounds of intervals. For example, we may have the interval
vector x = (x1, . . . , xn)T , where xi = [xi, xi]. The width of an interval xi is denoted
by w(xi) = xi − xi whereas the width of an interval vector x = (x1, . . . , xn)T is to be
understood as w(x) = max{w(xi) : i = 1, . . . , n}. The midpoint of x will be denoted by
mid x. The set of intervals will be denoted by IR, and the set of n-dimensional interval
vectors, also called boxes, by IR

n.
We recall that a function h : IR

n → IR is said to be an inclusion function of
h : R

n → R provided {h(y) : y ∈ y} ⊆ h(y) for all boxes y ⊂ IR
n within the domain

of h. For a function h predeclared in some programming language (like sin, exp,
etc.,), it is not too difficult to obtain a predeclared inclusion function h, since the
monotonicity intervals of predeclared functions are well known and then we can take
h(y) = {h(y) : y ∈ y} for any y ∈ IR in the domain of h. For a general function
f (y), y ∈ R

n, several methods can be employed to obtain inclusion functions although
how to find an inclusion function as good as possible, that is, producing bounds as
tight as possible, is still an open question (see [21,22]). The easiest method to obtain
an inclusion function is the natural interval extension, which is obtained by replac-
ing each occurrence of the variable y with a box including it, y, each occurrence
of a predeclared function h by its corresponding inclusion function h, and the real
arithmetic operators by the corresponding interval operators. Another method to
evaluate inclusion functions when h(y) is differentiable is the centered form, given by
h(y) = h(c)+ (y− c)T∇h(y) where c is any point of y (usually its midpoint) and ∇h(y)

an inclusion function of the gradient ∇h of h at y (usually obtained as the natural
interval extension of ∇h). The centered form usually gives over small boxes tighter
bounds as compared to the natural interval extension. However, the natural interval
extension is often very useful because of its computational simplicity.

4.1 The algorithm

The implementation of MCLM is described in pseudo-code form in Algorithm 1 (the
code is available upon request from the authors). We have considered the constraint
problems to be written in the form of (P̃i). In this way, we only have to deal with the
constraint on f2, and not with the one on f1 (the removal of the regions of δ-optimality
of the previous problems is done easily in our implementation, see Step 35 of Phase
2 in Algorithm 2).

In Algorithm 1, s denotes a box containing the feasible set S and max fj is the
maximum fj-value that any efficient point can take, j = 1, 2, that is, (max f1, max f2) is
the nadir point of (1). As we can see, to calculate max f1 we first solve the problem

J Glob Optim (2007) 38:315–331 323

(6) to optimality by calling Phase 1 of Algorithm 2 (see Step 3) with δ = 0 and using
f2 instead of f1, and then we compute max f1 = max{f 1(y) : y ∈ L2}, where L2 is
the solution list of Phase 1. Something similar is done to calculate max f2 (Step 5),
although this time we do not modify the value of δ, since (P̄0) is the first problem
for which we have to compute its region of δ-optimality. After that, the algorithm
(Steps 6–9) keeps calling Algorithm 2, the main procedure which obtains the regions
of δ-optimality of the constraint problems, until one of the problems is infeasible.

Algorithm 1 Constraint-Like Method

Input: f 1, f 2, hl(l = 1, . . . , r), s, δ, ε, η, µ,
Output: Lsol,

1 max f1 = max f2 = ∞;
2 s→ L1;
3 Call Phase 1 using f2 as f1, and δ = 0; max f1 = max{f 1(y) : y ∈ L2};
4 s→ L1;
5 Call Phase 1; max f2 = max{f 2(y) : y ∈ L2};
6 repeat
7 Phase 2,
8 Phase 1,
9 until Phase 1 terminates with no solution.

Algorithm 2 is the core of Algorithm 1. It allows to obtain the outer approximation
of the region of δ-optimality of the constraint problems. The algorithm is inspired by
the method in Plastria [17]. It consist of two phases. The aim of the first phase is to
obtain the optimal value of the constraint problem (within a tolerance ε), whereas the
aim of the second is to obtain its region of δ-optimality R(i)

δ (within a tolerance η).
However, Algorithm 2 differs from the method in Plastria [17] in several points.

First, the bounds are computed here with the help of interval analysis. Second, in addi-
tion to the ‘feasibility test’ (with two implementations, Feasible and Infeasible, in the
code) and the ‘δ-cut-off test’ (CutOffTest in the code, a modification of the classical
cut-off test [18], also used in Plastria [17]), we also use a variant of the ‘δ-monotonicity
test’ for strictly feasible and undetermined boxes (MonoTest) [4], a ‘pruning test’ [4]
(Prune in the code) applied to f2 or to both f1 and f2, and a multiobjective cut-off test
(which discards dominated boxes) [6].

A brief description of the discarding tests used follows.

Feasibility test: Let us suppose that S is given by S = {y ∈ R
n : hl(y) ≤ 0, l = 1, . . . , r}.

We say that a box y certainly satisfies the constraint hl(y) ≤ 0 if hl(y) ≤ 0 and that
y does certainly not satisfy it if hl(y) > 0. A box y ⊆ s is said certainly feasible if it
certainly satisfies all the constraints, certainly infeasible if it does certainly not sat-
isfy at least one of the constraints, and undetermined otherwise. The ‘Infeasible(y)’
test is true when the box y is certainly infeasible, whereas the ‘Feasible(y)’ test is
true when the box y is certainly feasible.

δ-Cut-off test: Every time a box y is chosen from the list L1, and provided that its
midpoint c is certainly feasible, we use f 1(c) (previously computed to evaluate the
centered form) to update (if possible, i.e., when f 1(c) < f̃) the best upper bound f̃
of the global minimum of the constraint problem (but see also the multi-objective
cut-off test). If updated, then the ‘CutOffTest(c, L1 ∪L2, L3, δ)’ sends to L3 all the
boxes y in L1 and L2 such that f 1(y) > f̃ (since they cannot contain the optimal

324 J Glob Optim (2007) 38:315–331

Algorithm 2 Main procedure

Phase 1

Input: f 1, f 2, hl , L1, LPES, δ, ε, max f1, max f2,
Output: L2, L3, L4, LPES, f̃ ,

1 while (L1 	= ∅) do
2 L1 → y; c→ mid (y)

3 Eval CenteredForm(f1, y, c)
4 Eval CenteredForm(f2, y, c)
5 if (f 1(y) > maxf1|| f 2(y) > maxf2)
6 continue
7 if Infeasible(y)
8 continue
9 if MultiCutOffTest(y))

10 continue
11 CutOffTest(c, L1 ∪ L2, L3, f̃ , δ);
12 if (f 1(y) > f̃)

13 if (f 1(y) ≤ f̃ ∗ (1+ δ))
14 y→ L3; continue
15 else
16 y→ L4; continue
17 if MonoTest(y,z)
18 y→ L3
19 z→ y
20 if (f 1(y)+ ε|f 1(y)| ≥ f̃ ||w(y) < ε)
21 y→ L2
22 else
23 Prune(y, f̃ , ε, δ)→ y1, y2
24 for i = 1, 2 do
25 f 2(yi)∩ = f 2(c)+ (yi − c)T∇f 2(y)

26 if Infeasible(yi)
27 continue
28 Eval f 1(yi)

29 f 1(yi)∩ = f 1(c)+ (yi − c)T∇f 1(y)

30 if MultiCutOffTest(yi)
31 continue
32 if (f 1(yi) > f̃)

33 if (f 1(yi) ≤ f̃ ∗ (1+ δ))
34 yi → L3; continue
35 else
36 yi → L4; continue
37 if (f 1(yi) > maxf1|| f 2(yi) > maxf2)
38 continue
39 yi → L1
40 endfor
41 endwhile

Phase 2

Input: f 1, f 2, hl , L2, L3, L4, LPES, f̃ , δ, ε,
η, µ, max f1, max f2,

Output: L1, Lsol, LPES,

1 while (L3 	= ∅) do
2 L3 → y; c→ mid (y)

3 Eval CenteredForm(f1, y, c)
4 Eval CenteredForm(f2, y, c)
5 if (f 1(y) > max f1|| f 2(y) > max f2)
6 continue
7 if Infeasible(y)
8 continue
9 if MultiCutOffTest(y)

10 continue
11 if (f 1(y) > f̃ ∗ (1+ δ))
12 y→ L4; continue
13 if (Feasible(c) and f 2(c) < f (i)

2 and

f 1(c) < f̃ ∗ (1+ δ))

14 f (i)
2 = f 2(c)

15 if (f 1(y) < f̃ ∗ (1+ δ)(1+ η) and
(Feasible(y) ||w(f 2(y)) < µ|| w(y) < ε))

16 yi → L2; continue
17 Prune(y, f̃ , ε, δ)→ y1, y2
18 for i = 1, 2 do
19 f 2(yi)∩ = f 2(c)+ (yi − c)T∇f 2(y)

20 if Infeasible(yi)
21 continue
22 Eval f 1(yi)

23 f 1(yi)∩ = f 1(c)+ (yi − c)T∇f 1(y)

24 if MultiCutOffTest(yi)
25 continue
26 if (f 1(yi) ≤ f̃ ∗ (1+ δ))
27 yi → L3; continue
28 else
29 yi → L4; continue
30 if (f 1(yi) > max f1|| f 2(yi) > max f2)
31 continue
32 yi → L3
33 endfor
34 endwhile
35 L2 → Lsol; L4 → L1
36 for z∗ ∈ LPES do
37 if z∗2 > f (i)

2
38 Remove z∗ from LPES

value of the constraint problem), and then sends to L4 all the boxes y in L3 such
that f 1(y) > f̃ (1+ δ) (since they cannot be in R(i)

δ).

Pruning test applied to f2: The pruning test was recently proposed in Martínez et al.
[14], and modified in Fernández et al. [3]. It uses gradient information to determine
regions in the actual box which cannot contain global optimizers. We briefly explain
it using, not to complicate matters, a two-dimensional minimization problem, and
we describe how to apply it along the y1-direction. Consider a box y = (y1, y2),
and suppose that we know a lower bound for the value of the objective function h
at (mid y1, y2), and also bounds for the gradient ∇h(y) (see Fig. 3). Then a lower
bounding function of h can be constructed as the planes in Fig. 3 (similarly to what

J Glob Optim (2007) 38:315–331 325

Fig. 3 Pruning method using the gradient

Fig. 4 Pruning applied to f1
and f2

A B

is commonly done in Lipschitz optimization [10]). Then, using an upper bounding
value h̃, the minimizer points in y can lie only in x and z.

In particular, when applied to f2 using f (i)
2 as upper bounding value, it means

that the feasible points in y can only lie in x or z. Therefore, the other parts of y
are not of interest neither for the current constraint problem nor for the rest of
constraint problems (since in the following constraint problems the upper bound
on f2 will be smaller than or equal to f (i)

2) and can be deleted.
This pruning test can be done for any coordinate direction of the box, generating

one or two new subboxes. In this sense, it can be seen as a bisection method along
the chosen coordinate. However, a coordinate j is selected only if w(yj) > ε. In
particular, we choose the coordinate direction j such that the corresponding part
removed from y is the largest one.

Pruning test applied to f1 and f2: A similar process to the one described in the above
pruning test can be done applying it to function f1 considering f̃ (1 + δ) as upper
bounding value. However, now, the parts of y which are not of interest (because
their f1 value is greater than f̃ (1+ δ)) have to be sent to L4, because they may be
of interest for the next constraint problems.

In order to apply the pruning technique to both f1 and f2 within the same algo-
rithm without generating too many boxes, we have used the strategy which we
explain with the following example (see Fig. 4). Let us suppose that the gray re-
gion A can be deleted by pruning with f2, while the striped area B can be cut by
pruning with f1. It is easy to see that cutting the region A is always a good decision,

326 J Glob Optim (2007) 38:315–331

because we generate at most two new subboxes, and the deleted regions do not
have to be taken into consideration anymore (they are not of interest for any of the
remaining problems). However the region B\A has to be sent to L4, if we decide
to cut it. That is why we only cut it if its area is greater that 10% of the area of the
original box. Furthermore, when B\A is not connected, only its greater part is sent
to L4 (provided that the previous condition holds). The selection of the coordinate
direction to apply the test is done as in the previous test.

δ-monotonicity test (for strictly feasible and undetermined boxes): In Fernández
et al. [6] a monotonicity test (for strictly feasible and undetermined boxes) is
described to decide whether the objective function f1 is strictly monotonous in a
box, which allows either to discard the box or to reduce it to one of its facets. Since
we are now computing R(i)

δ and not solving the constraint problem till optimality,
we cannot discard monotonous boxes. Instead, when MonoTest(y, z) is true, i.e.,
when the objective function is monotonous at y (0 	∈ ∇f 1(y)), the δ-monotonicity
test sends the box y to L3 (since it cannot contain the optimal value of the con-
straint problem), and follows the process with the facet z of y containing the best
points: z cannot be discarded since it can lie on the border of the feasible set of the
constraint problem). Note that this test is only useful in Phase 1.

Multiobjective cut-off test: This test was introduced in Fernández et al. [6]. Every
time MultiCutOffTest(y) is applied to a box y, and provided that its midpoint c (as
a point interval) is certainly feasible, we compute f (c) = (f 1(c), f 2(c)) and update
(if possible, i.e., if f (c) is not dominated by any point in LPES) the list LPES of ‘pro-
visional’ efficient solutions available so far. The test discards boxes whose points
are not efficient, i.e., a box y is removed (and then the test is true) if f (y) > z∗
for some z∗ ∈ LPES. When this test and the δ-cut-off test are used together in the
same algorithm, then f̃ is updated in the δ-cut-off test only if f (c) is not dominated
by any point in LPES. This is to avoid the possibility that the list L1 of a constraint
problem becomes empty, what may happen in some cases in which all its boxes are
deleted by the multiobjective cut-off test or the δ-cut-off test.
A few comments on the Algorithm 2 are in order. The box y to be chosen from L1

(Step 2 of Phase 1) and L3 (Step 2 of Phase 2) is the one with the lowest f
1
(y). In Step

20 of Phase 1 (see also Step 15 of Phase 2) we send a box to L2 if its width is less than a
given tolerance. We have added this stopping rule because if the tolerances are chosen
too small then, due to the overestimation of the inclusion functions, it may happen that
the other stopping criteria are never fulfilled. On the other hand, in Step 15 of Phase
2, for sending a box y to L2, in addition to the condition f 1(y) < f̃ (1+δ)(1+η) we also
require the box y either to be certainly feasible or to satisfy either w(f 2(y)) < µ (µ is
a given tolerance) or w(y) < ε. This is to avoid to send to L2 big undetermined boxes.

The resulting solution list Lsol of Algorithm 1 is the desired list of boxes containing
the complete efficient set of (1).

5 Computational experiments

5.1 Competitive location problems

In our computational studies, we have used test problems which correspond to the
biobjective competitive facility location problem introduced in Fernández et al. [6].

J Glob Optim (2007) 38:315–331 327

A franchise which wants to enlarge its presence in a given geographical region (where
other competing facilities offering the same service are already present) by opening
one new facility. Both the franchisor (the owner of the franchise) and the franchisee
(the actual owner of the new facility to be opened) have the same objective: maximize
their own profit. However, the maximization of the profit obtained by the franchisor
is in conflict with the maximization of the profit obtained by the franchisee. In the
model the demand is supposed to be inelastic and concentrated at n demand points,
whose locations and buying power are known. The location and quality of the existing
facilities are also known. In the spirit of Huff [11] we consider that the demand points
split their buying power among all the facilities proportionally to the attraction they
feel for them. The attraction (or utility) function of a customer towards a given facility
depends on the distance between the customer and the facility, as well as on other
characteristics of the facility which determine its quality. The location (x1, x2) and the
quality α of the new facility are the variables of the problem. For a mathematical
formulation of the problem see [5] or [6].

To clarify the biobjective nature of the problem and the way the constraint-like
method works, consider Fig. 5. In the picture on the left, light gray circles with num-
bers 1–5 denote forbidden regions around the existing demand points, supposed to be
at the center of the forbidden regions and all with demand 1, the cross × denotes the
location of an existing facility owned by the chain and the dotted box � the location
of a competitor’s facility. The franchisor would like the new facility to be located close
to demand point 5 (he/she already captures most of the market of demand points 1–4,
and in this way he/she can win a part of the market of demand point 5), whereas the
franchisee would like the facility to be located close to the existing chain-owned facil-
ity (in this way, he can capture nearly half of the market of demand points 1–4, which
is much more than he/she can gets by locating close to demand point 5). In different
colors, we can see the part of the outer approximation of the efficient set (projected
in the location space) obtained with the solution of the different constraint problems
considered in the execution of MCLM. In the picture on the right we can see the cor-
responding outer approximation of the nondominated set offered by the algorithm.
Notice that the biobjective problem considered is rather difficult (each objective alone
leads to a global optimization problem), and its efficient and nondominated sets may
have a very general shape (they can be even nonconnected, as in the example).

5.2 Results

To investigate the performance of Algorithm 1, as well as the efficiency of the differ-
ent discarding tests, we have generated different problems, varying the number of
demand points (n = 50, 100), the number of existing facilities (m = 2, 5, 10) and the
number of those facilities belonging to the chain (k = 0, 1 for m = 2, k = 0, 1, 2 for
m = 5, and k = 0, 2, 4 for m = 10). For each of the 16 settings considered one instance
was generated, by randomly choosing the parameters of the model uniformly within
some intervals. The searching space for every problem was x ∈ [0, 10]2, α ∈ [0.5, 5].
We set δ = 0.01 and the tolerances used in the algorithm were ε = 0.01 and η = 0.005.

All the computational results presented in this paper have been obtained on a PC
with an Intel Pentium IV 2.33 GHz processor and with 1 Gbyte RAM running under
Linux operating system. For the implementation we have used the interval arithmetic
modules provided in the PROFIL/BIAS library [12] and the automatic differentiation
of the C++ toolbox library described in Hammer et al. [8].

328 J Glob Optim (2007) 38:315–331

Fig. 5 Conflicting objectives
2

4

1

3

5

-300 -250 -200 -150

-572

-570

-568

-566

-564

First, we have studied the usefulness of the different discarding tests. To this end,
we have solved all the problems with the following algorithms:

simple: in this algorithm we only use the δ-cut-off and the feasibility test. In the
later, we use the corresponding natural interval extensions as the inclusion func-
tions of the constraints to check the feasibility. The pruning test is substituted by a
simple bisection of the box under consideration perpendicular to the direction of
maximum width.

basic: we use the tests in ‘simple,’ but now, in the feasibility test, for the constraint on
f2 we use the centered form as inclusion function.

basic + mono: we use the tests in ‘basic’ and the δ-monotonicity test.
basic + mco: we use the tests in ‘basic’ and the multiobjective cut-off test.
basic + prunf2: we use the tests in ‘basic’ and the pruning test applied to f2.
basic + prunf1f2: we use the test in ‘basic’ and the pruning test applied to f1 and f2.
basic + mco + prunf1f2: we use the tests in ‘basic + prunf1f2’ and the multiobjective

cut-off test.
basic + all: in which we use all the discarding tests, that is, we use as main procedure

the one given in Algorithm 2.

The results obtained are given in Table 1. For the ‘basic’ algorithm we computed
the CPU time in seconds (Time), the effort of the algorithm [to be understood as the
number of function evaluations plus three times the number of gradient evaluations
(recall that our problem is a three-dimensional one), Effort], the maximum number
of boxes stored in the lists (L1 + L2 + L3 + L4) at any time during the execution of
the algorithm (ML), the number of boxes in Lsol (FB), and the volume of the boxes in
Lsol (Vol). For the rest of the algorithms we computed the relative values of each of
those indices as compared to the values for ‘basic,’ in percentage. The values in Table
1 summarize those results, and give the corresponding values (in average) when we

J Glob Optim (2007) 38:315–331 329

Table 1 Comparison of the different discarding tests

Algorithm Time Effort ML FB Vol

basic Average: 336.6 17,10,024 13,791 62,043 2.4e-2

simple Average: – – – – –
Av. of%: 461% 755% 1,563% 7,360% 4,307%

basic+ Average: 101.8% 99.1% 85.1% 101.9% 104.2%

mono Av. of%: 100.8% 99.3% 87.9% 98.0% 93.6%

basic+ Average: 86.0% 61.8% 66.1% 44.8% 50.0%

mco Av. of%: 82.6% 64.1% 66.2% 38.3% 49.9%

basic+ Average: 94.5% 93.4% 55.2% 65.4% 100.0%

prunf2 Av. of%: 92.8% 86.9% 54.7% 64.4% 103.9%

basic+ Average: 79.3% 70.9% 67.6% 52.2% 83.3%

prunf1f2 Av. of%: 90.9% 85.0% 72.1% 65.3% 97.3%

basic+mco Average: 75.7% 55.7% 43.6% 34.0% 54.2%

+prunf1f2 Av. of%: 71.9% 53.0% 44.3% 28.3% 61.5%

basic+ Average: 80.4% 60.4% 44.9% 34.7% 58.3%

all Av. of%: 75.5% 59.1% 46.9% 27.6% 53.9%

consider the sixteen problems altogether (Average), and the average of the relative
values of each problem (Av. of %), respectively.

Whereas ‘basic’ is able to solve all the problems, ‘simple’ runs out of memory in
13 of the 16 problems (that is why we have not written any value in the average
line; on the other hand, in the other line we compute the mean of the averages of the
three problems for which ‘simple’ finished). This clearly shows that the overestimation
produced by the natural interval extension used in the feasibility test causes serious
troubles to the algorithm, which may be overcome with the use of the centered form.
‘basic’ solves all the problems in a reasonable amount of time (less than 6 min) and
the volume of the outer approximating set of the efficient set is, in average, 0.024, that
is, 0.0053% of the volume of the searching region.

The δ-monotonicity test does not seem to be useful for the type of problems under
consideration, since it does not significantly reduce any of the parameters under study.
On the contrary, the multiobjective cut-off test is very effective: it reduces the CPU
time more than 15%, the corresponding reductions in effort and maximum number
of boxes stored are around 35%, and the number of boxes is Lsol and their volume is
reduced by almost half.

The pruning test applied to f2 is also quite effective, specially in the reduction of
storage (ML and FB). However, it is better to apply the pruning to both f1 and f2, since
all the parameters under study (except ML) improve with regard to ‘basic + prunf2.’

When the multiobjective cut-off test and the pruning test applied to f1 and f2 are
used together, the algorithm obtains the best results. The CPU time is reduced more
than 25%, the effort and the volume of the solution boxes to nearly the half, the
maximum number of boxes stored is reduced more than 55% and the number of final
boxes more than 70%. Although the reductions obtained when used jointly are not
the sum of the individual reductions obtained with each discarding test alone, the re-
sults clearly show that when they are used together the performance of the algorithm

330 J Glob Optim (2007) 38:315–331

Table 2 Comparison with the direct B&B method

Algorithm Time Effort ML FB Vol

biobjective
algorithm Average: 783.5 494,528 20,267 21,882 9.2e-3

basic + mco Average: 41.5% 274.4% 23.9% 148.7% 92.4%
+ prunf1f2 Av. of%: 68.5% 227.0% 34.6% 140.5% 95.0%

is much better. This is so because the type of information that they use is different,
and thus, they discard different types of boxes.

If in addition to the previous tests we also use the δ-monotonicity test (i.e., the
algorithm ‘basic + all’) then all the parameters under study either remain in similar
values or slightly worsen, confirming again that the δ-monotonicity test is not useful
for the type of problems under consideration.

Second, we have compared the best implementation of MCLM (basic + mco +
prunf1f2) with the interval branch-and-bound method presented in the companion
paper [6], which is also aimed at the explicit construction of the full efficient set. The
method in Fernández et al. [6] deals with the biobjective problem directly, without
reducing it to a sequence of single-objective problems, and uses as discarding tests
the feasibility and multiobjective cut-off tests. The results obtained are summarized
in Table 2. For the biobjective interval B&B algorithm in Fernández et al. [6] we give
the values obtained when the tolerances used are ε1 = ε2 = ε3 = 0.01, whereas for
the ‘basic+mco+ prun f1f2’ we give the relative values of each of those indices as
compare to the other algorithm, using δ = 0.01, ε = 0.008, and η = 0.0004. With
those tolerances both methods produce outer approximations of similar quality (on
average, the volumes of the boxes in the corresponding Lsol lists are very similar).

As we can see, the effort required by our constraint-like method is much greater
than for the biobjective interval B&B algorithm (due to the use of gradient informa-
tion). However, our implementation of MCLM is considerably faster (on average it
needs 60% less time) and needs much less space (in average, ML is reduced around
75%). As for the number of boxes in Lsol, it is greater for our constraint-like method,
although the area covered by them is smaller. Thus, we can say that our constraint-
like method clearly outperforms the biobjective interval B&B algorithm in Fernández
et al. [6].

6 Conclusions and future research

We have presented a general method for obtaining an outer approximation of the effi-
cient set (and the nondominated set) of nonlinear biobjective optimization problems.
It is based on the constraint method, and transforms the problem to the computation of
the regions of δ-optimality of a finite number of single objective constraint problems.

A unified interval branch-and-bound implementation is developed, for which spe-
cific discarding tests are proposed. Although, the δ-cut-off test and the feasibility test
(using the centered form as inclusion function for the constraint on f2) are enough to
guarantee the convergence of the method, the use of other discarding tests, namely,
the pruning test applied to f1 and f2 and the multiobjective cut-off test, makes the
implementation much faster and reduces its storage requirements. In fact, when com-

J Glob Optim (2007) 38:315–331 331

pared to another general method recently proposed in Fernández et al. [6] with the
same aim, our method has shown to be clearly superior.

The design of additional discarding tests, as well as other accelerating devices, will
be the subject of future research. The extension of the method and the discarding tests
to more than two objectives, and the study of its efficiency, should also be investigated.

References

1. Carrizosa, E., Conde, E., Romero-Morales, D.: Location of a semiobnoxious facility. A biobjective
approach, In: Advances in Multiple Objective and Goal Programming 1996.Lecture Notes in Eco-
nomics and Mathematical Systems 455, pp. 338–346, Springer, Berlin Heidelberg Newyork (1997)

2. Ehrgott, M., Wiecek, M.M. : Multiobjective programming. In: Figueira, J., Greco, S.,
Ehrgott, M. (eds.) Multiple criteria Decision Analysis: State of the art surveys., pp. 667–
722. Kluwer, Dordrecht, MA (2005)

3. Fernández, J., Pelegrín, B., Plastria, F., Tóth, B.: Solving a Huff-like competitive location and
design model for profit maximization in the plane. Eur. J. Oper. Res. 179, 1274–1287 (2007)

4. Fernández, J., Pelegrín, B., Plastria, F., Tóth, B.: Planar location and design of a new facility with
inner and outer competition: an interval lexicographical-like solution procedure, Netw. Spat.
Econ, to appear (DOI: 10.1007/s11067-006-9005-4) (2007)

5. Fernández, J., Tóth, B.: Obtaining an outer approximation of the efficient set of nonlinear
biobjective problems (extended version of this paper), Available at http://www.um.es/geloca/
gio/CLMextended.pdf (2005)

6. Fernández, J., Tóth, B., Plastria, F., Pelegrín, B.: Reconciling franchisor and franchisee: a planar
biobjective competitive location and design model. In: Recent Advances in Optimization.
Lectures Notes in Economics and Mathematical Systems 563, pp. 375-398. Springer, Berlin
Heidelberg Newyork (2006)

7. Figueira, J., Greco, S., Ehrgott, M. (eds): Multiple Criteria Decision Analysis: State of the Art
Surveys, Kluwer, Dordrecht, MA (2004)

8. Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: C++ Toolbox for Verified Comput-
ing. Springer, Berlin Heidelberg New York (1995)

9. Hansen, E., Walster, G.W.: Global Optimization Using Interval Analysis, Second Edition,
Revised and Expanded. Marcel Dekker, New York (2004)

10. Hansen, P., Jaumard, B.: Lipschitz optimization. In: Handbook of Global Optimization. pp.
407–494. Kluwer, Dordrecht (1995)

11. Huff, D.L.: Defining and estimating a trading area. J. Mark. 28, 34–38 (1964)
12. Knüppel, O.: PROFIL/BIAS—a fast interval library. Computing 53, 277–287 (1994)
13. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht (1996)
14. Martínez, J.A., Casado, L.G., García, I., Tóth, B.: AMIGO: advanced multidimensional interval

analysis global optimization algorithm, In: Frontiers in Global Optimization. Nonconvex
Optimization and Its Applications, vol. 74, pp. 313–326. Kluwer, Dordrecht (2004)

15. Miettinen, K.S.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1998)
16. Nickel, S., Puerto, J.: Location Theory - a Unified Approach. Springer, Berlin (2005)
17. Plastria, F.: GBSSS: the generalized big square small square method for planar single-facility

location. Eur. J. Oper. Res. 62, 163–174 (1992)
18. Ratschek, H., Rokne, J.: New Computer Methods for Global Optimization. Ellis Hor-

wood, Chichester (1988)
19. Ruzika, S., Wiecek, M.M.: Approximation methods in multiobjective programming. J. Optim.

Theory Appl. 126, 473–501 (2005)
20. Sayin, S.: Measuring the quality of discrete representations of efficient sets in multiple objective

mathematical programming. Math. Program. 87, 543–560 (2000)
21. Tóth, B., Csendes, T.: Empirical investigation of the convergence speed of inclusion

functions. Reliable Comput. 11, 253–273 (2005)
22. Tóth, B., Fernández, J., Csendes, T.: Empirical convergence speed of inclusion functions for

facility location problems. J. Comput. Appl. Math. 199, 384–389 (2007)

	Obtaining an outer approximation of the efficient setof nonlinear biobjective problems
	Abstract
	Introduction
	Preliminaries
	The constraint method
	Obtaining a region of -optimality
	The constraint-like method
	Carrying out the method: an interval implementation
	The algorithm
	Computational experiments
	Competitive location problems
	Results
	Conclusions and future research

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

